Hamilton cycles in 3-connected claw-free and net-free graphs
نویسندگان
چکیده
For an integer s1, s2, s3 > 0, let Ns1,s2,s3 denote the graph obtained by identifying each vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length s1, s2, and s3, respectively. We determine a family F of graphs such that, every 3-connected (K1,3, Ns1,s2,1)-free graph Γ with s1 + s2 + 1 ≤ 10 is hamiltonian if and only if the closure of Γ is L(G) for some graph G / ∈ F . We also obtain the following results.
منابع مشابه
Extending Cycles Locally to Hamilton Cycles
A Hamilton circle in an infinite graph is a homeomorphic copy of the unit circle S1 that contains all vertices and all ends precisely once. We prove that every connected, locally connected, locally finite, claw-free graph has such a Hamilton circle, extending a result of Oberly and Sumner to infinite graphs. Furthermore, we show that such graphs are Hamilton-connected if and only if they are 3-...
متن کاملHamilton cycles in 5-connected line graphs
A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness.
متن کاملHourglasses and Hamilton cycles in 4-connected claw-free graphs
We show that if G is a 4-connected claw-free graph in which every induced hourglass subgraph S contains two non-adjacent vertices with a common neighbor outside S, then G is hamiltonian. This extends the fact that 4-connected claw-free, hourglass-free graphs are hamiltonian, thus proving a broader special case of a conjecture by Matthews and Sumner.
متن کاملA Closure for 1-Hamilton-Connectedness in Claw-Free Graphs
A graph G is 1-Hamilton-connected if G − x is Hamilton-connected for every vertex x ∈ V (G). In the paper we introduce a closure concept for 1-Hamiltonconnectedness in claw-free graphs. If G is a (new) closure of a claw-free graph G, then G is 1-Hamilton-connected if and only if G is 1-Hamilton-connected, G is the line graph of a multigraph, and for some x ∈ V (G), G − x is the line graph of a ...
متن کاملOn 1-Hamilton-connected claw-free graphs
A graph G is k-Hamilton-connected (k-hamiltonian) if G−X is Hamilton-connected (hamiltonian) for every setX ⊂ V (G) with |X| = k. In the paper, we prove that (i) every 5-connected claw-free graph with minimum degree at least 6 is 1Hamilton-connected, (ii) every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected. As a byproduct, we also show that every 5-connected line graph with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 313 شماره
صفحات -
تاریخ انتشار 2013